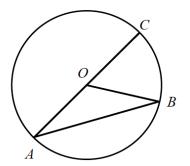
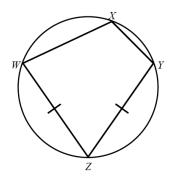

8.6 Angle & Arc Measures: Regents Questions

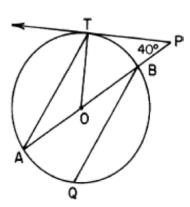

Geometry Regents 2013-2014 Ms. Lomac

XSLO: I can solve problems involving circle angle and arc measures.


(1) Find the measure of each variable if $m\angle A = 19$ and $\widehat{BC} = 118$. (not drawn to scale)

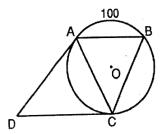
(2) Given: In $\bigcirc O$, $m \stackrel{\frown}{BAC} = 302$. Find $m \angle A$.

Given: $m \angle X = 110$; $\overline{WZ} \cong \overline{YZ}$; $m \angle Y =$



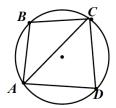
Refer to the diagram to find the measure of each of the following:

a.
$$\angle Z$$
 b. \widehat{WZ} c.

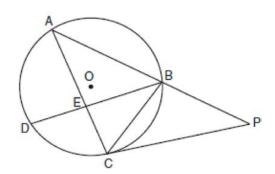

c.
$$\angle W$$
 d. \widehat{WX}

(4) \square In the accompanying diagram of circle O, \overline{PBOA} is a secant, \overrightarrow{PT} is tangent to circle O at T, $m \angle P = 40$, and $\overline{QB} \| \overline{AT}$.

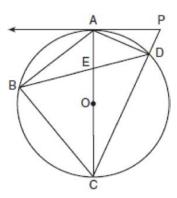
Find: $m \angle BOT$, $m \angle A$, \widehat{mAT} , $m \angle ATO$, $m \angle PBQ$


(5) In the accompanying diagram, $\overline{AB} \parallel \overline{CD}$, \overline{AD} and \overline{DC} are tangent to circle O, $\widehat{mAB} = 100$, and $\widehat{mAC} = \widehat{mCB}$.

Find $\widehat{\mathsf{mAC}}$, $\widehat{\mathsf{m}} \angle B$, $\widehat{\mathsf{m}} \angle D$ and $\widehat{\mathsf{m}} \angle BCD$ Is ABCD a parallelogram? [Explain your answer.]


(6) Compare the quantity in Column A with the quantity in Column B.

 $\begin{array}{ccc} \underline{\text{Column A}} & \underline{\text{Column B}} \\ m \angle ABC & m \angle ADC \end{array}$


- [A] The quantity in Column A is greater.
- [B] The quantity in Column B is greater.
- [C] The two quantities are equal.
- [D] The relationship cannot be determined on the basis of the information supplied.

(7) \square In the accompanying diagram of circle O, chords \overline{BD} , \overline{BC} , and \overline{AC} , tangent \overline{PC} , and secant \overline{ABP} are drawn; $m\angle DBC = 40$, $m\angle AEB = 110$; and \widehat{mAD} : $\widehat{mCB} = 9:5$.

Find: $\widehat{\mathsf{mAB}}$, $\widehat{\mathsf{mAD}}$, $\widehat{\mathsf{mAD}}$, $\widehat{\mathsf{mAP}}$, $\widehat{\mathsf{mACP}}$

(8) In the accompanying diagram of circle O, \overrightarrow{PA} is tangent to the circle at A; \overrightarrow{PDC} is a secant; diameter \overrightarrow{AEOC} intersects chord \overrightarrow{BD} at E; chords \overrightarrow{AB} , \overrightarrow{BC} , and \overrightarrow{DA} are drawn; $\overrightarrow{mDA} = 46$; and \overrightarrow{mBC} is 32 more than \overrightarrow{mAB} .

Find: $\widehat{\mathsf{mAB}}$; $\mathsf{m} \angle BAC$; $\mathsf{m} \angle P$; $\mathsf{m} \angle DEC$; $\mathsf{m} \angle PDA$